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Abstract: Multiple exposure speckle imaging has demonstrated its improved accuracy compared
to single exposure speckle imaging for relative quantitation of blood flow in vivo. However, the
calculation of blood flow maps relies on a pixelwise non-linear fit of a multi-parametric model to
the speckle contrasts. This approach has two major drawbacks. First, it is computer-intensive and
prevents real time imaging and, second, the mathematical model is not universal and should in
principle be adapted to the type of blood vessels. We evaluated a model-free machine learning
approach based on a convolutional neural network as an alternative to the non-linear fit approach.
A network was designed and trained with annotated speckle contrast data from microfluidic
experiments. The neural network performances are then compared to the non-linear fit approach
applied to in vitro and in vivo data. The study demonstrates the potential of convolutional
networks to provide relative blood flow maps from multiple exposure speckle data in real time.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Blood flow is one of the paramount parameters monitored for diseases diagnosis or treatment
follow-up in various medical fields. For instance, blood flow measurement is an indicator of the
skin’s healing capability from burns, tissue’s viability during surgery or an impaired vasodilatory
response in metabolic diseases such as diabetes [1].

Laser speckle contrast imaging (LSCI) has emerged as a non-invasive, contactless, and
tracer-less technique for blood flow assessment in micro-vessels [2]. It is based on the reflectance
imaging of tissues illuminated with coherent light. Speckle patterns arise from the interference
of backscattered photons with different path lengths. Moving particles in the field of view, i.e.,
red blood cells (RBCs), cause spatiotemporal fluctuations of the speckle pattern in the image
plane. In the spatial domain, these fluctuations can be seen as image blurring. In LSCI, the
spatial speckle contrast (K) quantifies the extent of this spatial blurring and is defined as:

K =
σ

⟨I⟩
(1)

where σ represents detected intensities standard deviation and ⟨I⟩ represents detected average
intensity, all calculated locally typically using a spatial (5× 5) sliding window. The speckle
contrast theory developed by Goodman [3] demonstrates the relationship between the contrast,
the camera exposure time T and the scatterers decorrelation time τc. The Inverse Correlation
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Time 1/τc (ICT) was experimentally demonstrated to be proportional to the scatterers’ velocity,
but the exact relationship is not known as it depends on several unknown parameters (scatterers
shape, dimension, and probability distribution) [4]. For further reviews on speckle imaging
instrumentations and applications see [4,5]. Multiple exposure speckle imaging (MESI) is a
significant upgrade of LSCI. It has been introduced to improve the accuracy of relative blood flow
estimation in presence of static scatterers and experimental noises [6]. Briefly, a mathematical
model that includes noise and static scatterers contributions is fitted to speckle contrast images
obtained for different exposure times. The obtained ICT scales linearly with the flow, which is
not the case for LSCI in the presence of static scatterers or for large flows [7–9].

Despite its better accuracy compared to LSCI, MESI suffers from the need to acquire several
exposure images followed by a pixelwise non-linear fit to a multiparametric model. MESI
acquisition can be cumbersome and subsequent data analysis is computationally intensive,
preventing real-time analysis. Therefore, most laboratory systems and all commercial speckle
imaging systems either for pre-clinical or clinical applications still rely on LSCI. For fast MESI
data acquisition, previous developments have used custom fast CMOS sensors associated to field
programmable gate arrays (FPGA). These architectures allow MESI data recording in a synthetic
exposure mode, strongly decreasing the duration required for acquisition of a set of multi-exposure
frames [8,10]. Implementation of MESI synthetic exposure acquisition with a standard CMOS
was also demonstrated provided that noise contributions are accurately evaluated and subtracted
[11]. For fast computation of blood flow maps from MESI data, recent developments have
focused on using neural networks to bypass the computer intensive burden of the non-linear fitting
step. Most of the proposed networks were trained using simulated MESI speckle data [12,13]
or using experimental LSCI speckle data obtained experimentally for flows in a single large
diameter channel [14]. Surprisingly, most reported studies used simple artificial neural networks
(ANNs), whereas convolutional neural networks (CNNs) are inherently expected to perform
better for image analysis due to their ability to extract local relevant features automatically [15].
In recent years, CNN has gained considerable attention in image-to-image translation, such as
denoising, super-resolution, and prediction [16] and has already found application in laser speckle
reduction [17] and denoising of laser speckle imaging [18]. Recently, a study has proposed
the use of CNN for analysis of speckle contrast imaging data. The network was trained and
validated in vitro with experimental speckle data obtained using a disk covered with diffusive
paint with controlled rotation speeds to emulate flows [19]. The aim of the present study is to
evaluate the performances of two architectures of CNNs and compare them to the non-linear fit
approach to derive blood flow maps from in vivo MESI data. First, we build an experimental
dataset of MESI contrast images using microfluidic phantoms for a physiological range of blood
vessels diameters and flows. Second, we use this dataset to train different CNN architectures.
Third, we compare the performances of the CNN approach to the non-linear fit approach. Two
residual CNN architectures (multiple-stream residual CNN and three-dimensional residual CNN)
focusing on spatial and exposure times features were tested to predict blood flow maps from
MESI data. Finally, the analysis of in vivo MESI data was carried out with the CNN architecture
with the best performances and compared to the non-linear fit approach.

2. Materials and methods

2.1. MESI set-up and speckle contrast images database building

The imaging set-up is showed in Fig. 1. A 633 nm laser diode (SGL, Shanghai, China) is used.
Images were acquired with a sCMOS camera (Orca Flash 2.8, Hamamatsu, Japan) through a
stereomicroscope (Leica MZ16). Images are composed of 1920× 1440 square pixels. MESI
data were obtained for the following exposure times: 1, 2, 5, 10, 15, and 25 and 50 ms and for
two magnification levels of the optics (×2.5 and ×6) corresponding to fields of view of 3× 2.1
mm2 and 1.1× 0.9 mm2 respectively. For all conditions, speckle contrast images K at different
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exposure times were generated using the MESI synthetic exposure technique as detailed in [11]
with a 5× 5 sliding window and Eq. (1).

Fig. 1. MESI synthetic exposure imaging set-up. A speckle contrast images database was
acquired for different exposure times, flows and channels diameter using a microfluidic
system (pressure flow control, flowmeter, and a microfluidic chip) with 2%-intralipid as
flowing media. Insert: microfluidic chip including 40, 60, 80, 100, 300 and 500 µm diameter
channels.

The microfluidic set-up was described in detail previously [9]. Speckle contrast images were
obtained for various flows in microfluidic channels with diameters of 40, 60, 80, 100, 300 and
500 µm. We used 2%-intralipid as flowing media as it provides a reduced scattering optical
coefficient close to that of flowing blood [20,21]. For the database construction, flows of 1, 2, 3,
4, 5, 6, 7 and 8 µl/min have been used. These flows are representative of microcirculation blood
velocities in the mice brain (speed ranging from 0.5 to 30 mm/s) [7,22]. All flow values have been
used to generate the database except for the 40 µm channel where the highest achievable flow
with reliable stability was 5 µl/min. Representative speckle contrast images from the database are
shown in Fig. 2. The complete dataset is available on an institutional repository and referenced
as Dataset 1 [23].

2.2. Non-linear fitting on speckle contrast data for blood flow estimation

Contrast images are computed using Eq. (1). A sliding spatial window of 5× 5 pixels is used for
the calculation of the local contrast over the whole image. For exposure times greater than 1 ms,
the speckle contrast is calculated after frames summation and noises correction as detailed in
[11]. Equation (2) is fitted to MESI data as a function of exposure time.

K(T, τc) =
{︃
β ρ

2 e−2x − 1 + 2x
2x2 + 4βρ (1 − ρ)

e−x − 1 + x
x2 + υnoise

}︃1/2

(2)

https://doi.org/10.57745/KHGHTO
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Fig. 2. Speckle contrast database sample images. Representative speckle contrast images
are shown for Q= 2 µl/min and Q= 5 µl/min), 2 different channels diameters Φ= 100 µm
and Φ= 300 µm and two magnification levels (×2.5 and ×6). In each case, contrast images
are shown for three exposure times (T= 1 ms, T= 5 ms and T= 15 ms).

T is the camera exposure time, β is a unitless constant that accounts for spatial averaging of
the speckle grains, ρ is the ratio of the intensity contribution of mobile scatterers over the total
intensity due to mobile and static scatterers, x is the ratio of T over τc, and υnoise accounts for all
experimental noises contributions [6]. Before the non-linear fit of the model to the experimental
data, βwas fixed after evaluating the maximum achievable speckle contrast for our imaging set-up
using all the pixels of the speckle image of a reflectance standard [24]. A non-linear least-square
approach implemented using Levenberg-Marquardt algorithm was used (curve_fit function from
Scipy.optimize in Python 3.9). The decorrelation time τc derived from the non-linear fit allows
calculation of the Inverse Correlation Time (ICT) used as the metric for the relative blood flow
change.

2.3. Framework of CNN-based blood flow prediction from MESI data

2.3.1. Patch extraction and reference flow map preparation

The overall architecture of the proposed patch-based blood flow prediction from MESI data is
shown in Fig. 3. CNN-based methods need large numbers of samples. This requirement cannot
be easily met in practice, especially for pre-clinical optical imaging. In this study, we proposed
to use randomly sampling patches in the speckle contrast images. The advantage of this strategy
is that it detects the small features of local regions while increasing the number of samples
considerably. For supervised training, input pairs of speckle contrast images and ground truth
flow maps are required. Experimental speckle images are acquired from channels with controlled
geometrical parameters and with controlled flows accurately measured in-line. Yet, this value is
an average flow inside all the channel. The reference velocity maps accounting for velocities
distributions inside the channels were generated by numerically solving the Navier-Stokes equation
for fluid dynamics in laminar permanent flow based on the geometry and average flow rate of
microchannels. A rigid transformation was then used to align the generated reference image with
the channel position in the contrast images. During the network training phase, patches (128× 128
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pixels) containing the microfluidic channel are randomly selected from speckle contrast images,
while the corresponding patches for the learning target are simultaneously extracted from the
reference flow map at the same location. Data augmentation with image rotation was further
applied to simulate different orientations of blood vessels within the speckle images. During
the prediction phase, the speckle contrast image was spilt into uniform half-overlapped patches
that were then fed into the CNN in sequential order. A full flow map is then assembled from the
predicted flow patches using the 64× 64 central parts of the 128× 128 patches inferred. This
allows to have no overlap on the output map, yet no visible border effects as well due to the
use of overlapping inputs. A flowchart of patches inference and re-assembly is provided as
supplementary Figure S2.

Fig. 3. The working pipeline of the proposed patch-based flow prediction method. Patches
(128× 128 pixels) for speckle contrast images and reference flow map were randomly
extracted within the microfluidic channels. The datasets of the training pairs were used to
train the proposed CNN architectures. For the prediction stage, each patch of the speckle
contrast images was processed by the trained network. The predicted flow patches were then
reassembled to form the output flow map.

2.3.2. Network architectures

To predict flow maps from MESI images in an end-to-end fashion, we developed two neural
network architectures based on residual neural network (Res-Net) model focusing on spatial
features and the correlation information between frames acquired at different exposure times.
Figure 4(a) presents the multiple-stream residual network (MSR-Net), which is divided into
seven sub-streams, each corresponding to one exposure time. The speckle contrast patches along
the dimension of exposure times are the inputs for each stream. Each stream of the network
architecture contains B residual blocks with identical layout. The residual block comprises
two-dimensional convolution (Conv) layers (8 feature channels, 3 × 3 filter with a stride of 1
and replication padding) with batch normalization (BN) and leaky rectified linear unit (leaky
ReLU) layers. The features obtained at the output of each stream are concatenated and passed to
the subsequent output stream. A shortcut connection within each residual block is applied to
perform identity mapping and skip the two Conv layers to avoid the vanishing gradient problem
[25]. The number B of residual blocks was progressively increased to evaluate the best trade-off
between features extraction and network convergence and time required for training. In principle,
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the network learns the appropriate combinations of features from the seven streams to predict the
final flow map.
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Fig. 4. Architecture of the two residual neural networks proposed for blood flow prediction
from multiple exposure speckle patches.

Figure 4(b) presents the architecture of a residual 3D convolution neural network (Res3D-Net).
The input of the network is a stack of speckle contrast patches with sequentially increasing
exposure times. The proposed Res3D-Net is based on 3D residual blocks to learn the spatial-
exposure features. The first B 3D residual blocks (8 feature channels, 3 × 3 × 1 filter with a
stride of 1 and replication padding) serve as the joint-spatial feature extractor across multiple
exposure speckle contrast images. At the end of the feature extractor, the generated features are
then fed into three spatial-exposure residual blocks (8 feature channels, 3 × 3 × 3 filter with a
stride of 1, replication padding along spatial dimension, and no padding along exposure time
dimension). The strategy of no padding along the exposure time dimension allows for a gradual
extraction of neighboring exposure features from local to global information while preserving
input distribution along the borders of the exposure time dimension.
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2.3.3. Network training

We used a five-fold cross-validation method to evaluate the performances of the two networks.
This allows a robust estimation of the model performances bias and variances [26]. The patch
dataset is composed of 18,000 patches obtained by random sampling of 200 patches from each of
90 MESI data sets corresponding to different experimental parameters (5 flows for the 40 µm
diameter channel, 8 flows for all other 5 channel dimensions, all at two optical magnification).
The patches pairs were obtained from experimental speckle contrasts images and associated
ground truth flow maps as detailed in section 2.3.1. The entire dataset was used for part-to-part
training and validation. The patches were randomly gathered into five groups each with the
same number of patches. The patch from a single microfluidic parameter could be found only
in one of the groups. Each group, therefore, contained data from a couple of microfluidic
parameters (different flows, microfluidic diameters, and magnification levels), referred to as
microfluidic parameter-wise cross-validation. The microfluidic parameter-wise cross-validation
was implemented to test the generalization capability of the network for flow prediction under
different microfluidic parameters. To compare the performance of our network with non-linear
fitting methods, we further tested the network without five-fold cross-validation. Each speckle
image was split in half horizontally, then the top half was used for training and the bottom
half as testing. Each top half of the 90 speckle images is randomly sampled into 200 patches,
resulting in a training dataset composed of 18,000 patches and their associated ground truth
flow patches. In contrast with the cross-validation method described above, the patches in
the training data set cover all microfluidic parameters. The resulting trained network was first
applied to process testing data from the microfluidic flow phantoms, and second it was applied to
process in vivo MESI data, and to compare the network results with the non-linear fitting method
applied to the same data. Both network architectures were trained using MATLAB R2021a
on a workstation (NVIDIA Quadro GV100 GPU, 32 GB RAM). Weights for convolution were
initialized with the Xavier initializer. Mean squared error (or L2 loss) and Adaptive Moment
Estimation (ADAM) optimizer were used for optimizing weights and biases, with a learning rate
of 0.01, and momentum of 0.9. A mini batch of size 100 is adopted for model training. All
networks were trained for 50 epochs, which was empirically determined through loss curves and
consistent across all the folds. The trained model is converted to ONNX (Open Neural Network
Exchange) format for deploying into different platforms.

2.4. Evaluation metrics

To evaluate the performances of the two networks, we measured the mean absolute error (MAE),
root mean squared error (RMSE), peak signal-to-noise ratio (PSNR), mean absolute percentage
error (MAPE), and structural similarity index metrics (SSIM) [27] between predicted flow image
and the reference flow image.

MAE =
1
M

∑︂
i∈M

|fi −ˆ︁fi | (3)

RMSE =
√︃

1
M

∑︂
i∈M

(fi −ˆ︁fi)
2

(4)

PSNR = 20 · log10
MAX
RMSE

(5)

MAPE =
100%

M

∑︂
i∈M

|︁|︁|︁|︁|︁ fi −ˆ︁fiˆ︁fi

|︁|︁|︁|︁|︁ (6)

SSIM =
(2µf̂µf + C1)(2σf̂f + C2)

(µ2
f + µ

2
f̂
+ C1)(σ

2
f + σ

2
f̂
+ C2)

(7)
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where M is the total number of pixels; fi andˆ︁fi denote the flow rate at pixel i for the predicted and
reference flow maps, respectively. MAX indicates the maximum intensity value of the evaluated
image. C1 and C2 are constant parameters, while µf̂ , µf, σf̂ , σf and σfσf̂ are images statistics
(means and standard deviations).

2.5. In vivo experiments

All experiments were performed in accordance with the European Directive 2010/63/UE (Ethical
project #CEB-03-2018) regarding the care and use of laboratory animals. MESI recordings were
carried out in a 4-months old, anesthetized mouse (male, C57BL6, mean weight= 48 g) after a
craniotomy was performed over the barrel cortex. The surgical protocol was described previously
[9]. A whiskers’ stimulation protocol was applied to visualize the blood flow change in the medial
cerebral artery (MCA) in particular. Mouse’s whiskers were stimulated unilaterally with a cotton
swab attached to a servomotor (f= 2 Hz;± 60°) driven and synchronized with acquisition start
using an Arduino microcontroller. A trial recording consisted of a baseline phase (10s) followed
by mechanical stimulation of the whiskers phase (30 s) and finally a rest phase (30 s). MCA
images were acquired on the contralateral side of whiskers being stimulated. For the analysis of
in vivo data both techniques (CNN method and non-linear fitting method) were compared on
Python 3.9 using Intel Xeon Gold 6244 CPU @ 3.60 GHz 16/32 physical/logical cores.

3. Results

3.1. Speckle contrast database

Figure 5 shows representative speckle contrasts for the whole range of exposure times, for two
channels, two different flows and two imaging magnifications. As expected, the speckle contrast
decreases with increasing exposure times and with increasing flows. Identical flows lead to
similar speckle contrast values for both channels diameters. More unexpected, using a higher
optical magnification leads to significantly higher values of the speckle contrast for the same
parameters of flow, exposure, and channel diameter. Calculation of the number N of camera
pixels per speckle grain image (i.e. spatial sampling of each speckle grain at the sensor) leads
to values between 2.3 and 4.5, above the Nyquist sampling criteria. Following Thompson et al
[24], we also calculated the ratio of the window size used for contrast calculation to the speckle
size. Values of 2.4 and 1.1 were found for magnification of ×2.5 and ×6 respectively. The
value at ×2.5 is not optimal but close to the threshold advisable value. The low value at ×6
magnification clearly results in underestimation the speckle contrasts due to the lack of statistics
in the calculation of σ. Normalization by an experimental estimate of beta calculated over a large
field of view was carried-out but did not allow to fully recover the same K(T) curves for ×2.5 and
×6 magnifications (see supplementary Figure S3). We believe that further parameters modified
by magnification like depth of field could affect the contrast [28,29]. This result needs to be
further studied in our specific set-up, yet it underlines the relevance of using experimental images
to train the network with data accounting for instrumental effects difficult to simulate.

3.2. Performance evaluation of MSR-Net and Res3D-Net

Table 1 summarizes the performances evaluation metrics MAE, RMSE, SSIM, PSNR and MAPE
(see section 2.4) for the predicted maps using MSR-Net and Res3D-Net with respect to reference
maps. For both networks the number of residual blocks B was increased from 1 to 6 and as
expected, the accuracy of the network increases with the increase of B. Adding more residual
blocks also increase the difficulty to achieve convergence resulting in much longer training time.
Considering this tradeoff, the optimal number of residual blocks was determined to be 5 for
both networks. To evaluate the statistical differences between the predictions of Res3D-Net
and MSR-Net for the optimal number of residual blocks, we performed a Wilcoxon signed rank
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Fig. 5. Speckle contrast as a function of exposure time. A) For a channel of diameter
Φ= 100 µm B) For a channel of diameter Φ= 300 µm. Black symbols correspond to the 2
µl/min flow. Red symbols correspond to the 5 µl/min. Diamonds correspond to the ×2.5
magnification. Dots correspond to the x6 magnification.

test on the metrics from the five-fold predicted results. No significant difference was found in
the predictive performance between the two networks, as indicated by p values greater than
0.05 for all metrics. However, Res3D-Net demonstrated lower levels of uncertainty in its point
estimates of the metrics compared to MSR-Net, suggesting more robust predictions. As a result,
the Res3D-Net approach was selected for use in subsequent experiments.

Table 1. Comparison of performances metrics for MSR-Net and Res3D-Net. The best performances
for each metric are indicated in bold font. Values correspond to the mean metrics across all five

sets of predicted results from five-fold cross-validation and the corresponding standard error.

Model Type Number of
residual
blocks B

RMSE±SE MAE±SE SSIM±SE PSNR±SE MAPE±SE

MSR-Net

1 1.86± 0.16 0.57± 0.09 0.67± 0.05 92.18± 0.58 30.2%±2.4%

2 1.61± 0.09 0.44± 0.05 0.75± 0.03 93.09± 0.57 29.1%±2.3%

3 1.53± 0.05 0.41± 0.03 0.75± 0.02 93.24± 0.23 25.7%±0.9%

4 1.46± 0.09 0.39± 0.04 0.78± 0.04 93.94± 0.48 30.3%±2.6%

5 1.33± 0.11 0.38± 0.07 0.73± 0.08 94.80± 0.62 26.7%±2.9%

6 1.36± 0.08 0.40± 0.06 0.68± 0.15 94.36± 0.50 21.5%±1.1%

Res3D-Net

1 1.59± 0.08 0.47± 0.06 0.53± 0.08 93.23± 0.32 27.2%±1.2%

2 1.49± 0.07 0.39± 0.04 0.75± 0.06 93.76± 0.34 27.51%±1.6%

3 1.46± 0.07 0.39± 0.04 0.71± 0.04 93.81± 0.35 28.44%±1.9%

4 1.44± 0.06 0.39± 0.03 0.72± 0.07 93.84± 0.32 27.8%±2.4%

5 1.37± 0.06 0.36± 0.03 0.73± 0.06 94.40± 0.32 24.6%±0.9%

6 1.38± 0.06 0.37± 0.04 0.68± 0.07 94.29± 0.39 24.0%±1.1%

3.3. Comparison of CNN and non-linear fitting methods

Inverse correlation times maps (ICT) are derived from the non-linear fitting procedure, while
the CNN produces velocity maps in mm/s units. The exact relationship between velocity and
ICT is not known, though there is a proportionality relationship between both [30,31]. We have
compared maps normalized to their maximum. As a representative example, Figs. 6(A) and 6(B)
show a comparison between normalized velocity maps generated by CNN and normalized ICT
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maps derived from pixelwise non-linear fitting at varying flow rates under two distinct optical
magnifications (×2.5 and× 6) for the channel of diameter Φ= 300 µm. It is important to note
that MESI data were acquired in a sub-optimal temporal sampling using a simplified acquisition
scheme [11]. Especially, the minimal exposure time in the MESI data is 1 ms. This leads the
non-linear fit procedure to fail to converge or to produce unrealistic extreme values for some
pixels in the ICT map. To mitigate these effects, a 2D median filter (15× 15) was applied to the
ICT map prior to normalization. Figures 6(C) and 6(D) display the corresponding profiles within
the central region (across 40 pixels) of both ICT and speed maps at a flow rate of 8 µl/min. The
profiles across the channel predicted from both approaches present similar shapes. However,
pixelwise non-linear fitting is highly susceptible to the noise, resulting in failure to converge
during the fitting process and predicting blood flow fluctuations with many extreme values. In
contrast, the CNN approach incorporates information from neighboring pixels during regional
feature extraction through convolutional computation, resulting in clearer dynamics (excluding
extreme values) and more spatially homogeneous predictions of relative blood speed changes.
Interestingly the CNN approach also reduces the edge effects (higher values of predicted speeds
on the edges of the channel) due to the speckle contrast spatial processing.
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Fig. 6. Comparison of speed maps predicted by CNN and ICT maps derived from the
non-linear fit under (A)× 2.5 magnification and (B)× 6 magnification and (C-D) their
corresponding profiles extracted from both maps at a flow rate of 8 µl/min. The mean speeds
varied from 0.74 to 5.93 mm/s (flows ranging from 1 to 8 µl/min) in 0.74 mm/s increments
for the Φ= 300 µm channel.

Figure 7 shows the relative changes of Res3D-Net predicted speeds and non-linear fit ICTs as a
function of the flow in channels with increasing diameter (60, 80, 100 and 300 µm). All relative
changes are normalized to a reference flow of 4.5 µl/min. In all channels, the relative changes
estimated either by the CNN approach or by the non-linear fit scale linearly with the actual
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relative changes of the flow measured independently (by the microfluidic system inline flowmeter)
in the channel. However, the CNN approach performs much better in terms of linearity, the
R-square values for CNN range from 0.82 to 0.96, while those for non-linear fit range from 0.21 to
0.91. Except for smallest channel, the slope of the linear regression derived from the Res3D-Net
predicted results ranges from about 0.19 to 0.23, which is very close to the slope of 0.22 for the
reference flow. In contrast, non-linear fits are susceptible to noise interference, resulting in a
slope range of approximately 0.09 to 0.23. In addition, the non-linear fit approach results in
outliers such as the relative flow change for a 4 µl/min flow in the 80 µm channel or the relative
flow change at 8 µl/min in the 100 µm channel. Overall, Res3D-Net exhibits a higher slope than
non-linear fits, indicating a broader and more robust dynamic range in response to incremental
increases in flow rate. In the case of the smallest channel, the slope of the regression line from
CNN-predicted results deviates from the expected values (reference flow). This deviation may
be attributed to the smaller number of pixels with flow in images of small channels compared
to large channels, resulting in a limited number of training patches with flow and potentially
insufficient training. Future work is required to address this issue by increasing the sample size
for channels with smallest dimensions.
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Fig. 7. Relative changes of speeds and ICTs (normalized values to flow of 4.5 µl/min) as a
function of the actual flows in channels with increasing diameter (60, 80, 100 and 300 µm).
Ideal reference is provided as black dots.
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Fig. 8. Derivation of relative flow maps and changes from data obtained in vivo during
sensory stimulation of the brain in mice. (A) Reflectance image of the MCA under green
incoherent illumination at 570 nm. (B) Non-linear fit ICT map. (C) Res3D-Net predicted
speed map. (D) Normalized speed/ICT profile (using ROI #1) that was applied on the CNN
predicted speed map and the ICT fitted map respectively. Both profiles were fitted to the
laminar viscous flow model. The center of the channel coincides with the reference 0 µm
distance. (E) Time course of the relative changes in the speed during whiskers stimulation
extracted from the Res3D-Net prediction maps after image processing (using ROI #2).

3.4. Implementation of CNN analysis on in vivo data

Multiple exposure speckle contrast images acquired in vivo were processed using the non-linear
fit MESI model and the Res3D neural network. Figure 8(A) shows a reference image of the
mouse’s brain under incoherent illumination at 570 nm, where the MCA main branch is visible.
The corresponding extracted ICT and Res3D-Net-derived speed maps from the same MESI data
are shown on Figs. 8(B) and 8(C) respectively. On both maps, the smallest capillaries that are
partly out of focus could not be analyzed but either the non-linear fit and CNN approaches. We
believe that in our experimental conditions the fit failure is mostly related to the lack of data at
exposure times lower than 1 ms. This minimal exposure time was chosen for synthetic exposure
as a trade-off between sensitivity and amount of data required for in vivo dynamic studies (several
1-minute stimulation/recovery trials are recorded during a single imaging session, see Fig. 8(D)).
Yet as the decorrelation times observed experimentally in vivo in the mice brain is mostly close or
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below 1 ms [32], the decorrelation is not fully captured thus leading to possible non convergence
of the model. For the analysis of these sub-optimal MESI data, the CNN derived map shows a
larger dynamic of speed values compared to the non-linear fit derived ICT map. In addition, it
presents homogeneous values in neighboring pixels while the ICT map presents some null values
corresponding to pixels where the non-linear fitting model did not converge.

The region of interest ROI#1 on Fig. 8(A) was used to derive the profile of the normalized ICT
and speed derived from Fig. 8(B) and 8(C) respectively. Figure 8(D) shows the corresponding
profiles in plain lines. A parabolic profile fits the data very well in both cases (dashed lines).
This corresponds to the laminar viscous flow following Poiseuille’s law in a cylinder-shaped
channel, thus validating the choice of this model to define the target images for the training of the
network. The profiles demonstrate again higher dynamics and lower noise in the map derived
using the Res3D-Net approach compared to the non-linear fit approach.

The region of interest ROI#2 on Fig. 8(A) was used to derive the time course of the relative
changes of the speed during a single short sensory stimulation trial showed on Fig. 8(D). An
increase of the blood speed of around +2% is detected during the stimulation relatively to the
baseline mean value indicating a functional activation of the underlying somatosensory cortex.
This increase of blood speed is followed by a decay back to the baseline value once the stimulation
ceases.

4. Discussion

In this work, we have proposed a novel CNN-based approach as an alternative to conventional
non-linear algorithms to process MESI data to extract relative flow-speed changes. The method
relies on a 3D CNN (Res3D-Net) end-to-end neural network for MESI, which is capable of
mapping blood flow with better image contrast and signal-to noise ratio (SNR) comparing to
existing algorithms.

4.1. Benefit and limits of real experimental data for network training

We have trained the CNN using speckle contrast images of flows in microfluidic channels obtained
experimentally with the same MESI imaging set-up that was used to acquire in vivo speckle
contrasts images to be analyzed by the neural network for blood low estimations. In comparison
to training based on simulated speckle contrasts images, the experimental training database
has the advantage of incorporating all the instrumental and experimental parameters that are
very difficult to accurately account for in simulations. Indeed, it has been demonstrated that the
experimental speckle contrast values are strongly affected by many experimental parameters,
some of which are difficult to evaluate. This includes the spatial sampling of the speckle grain
at the sensor level defined by the camera magnification, pixel dimensions of the sensor and
the numerical aperture of optics [33], the laser source coherence length [34], polarization, and
angle of incidence [4], the illumination intensity and distribution, the camera dynamics and
pixel well-depth, the camera readout and dark noise (including fixed patterns noise) [35]. Here,
the use of microfluidic phantoms with controlled flows obtained through pressure control and
on-line feedback allowed to create target images with accurate flow values for network training.
Care was also taken to train the network with images obtained on channels with dimensions
and flows representative of the mouse brain physiology, which was not achieved in previous
attempts at using machine learning for speckle imaging analysis [14,19]. Using experimental
data to train the network has also limits compared to simulations. Practically, MESI data can be
acquired for a finite number of experimental situations, thus not all possible diameters and flows
within the physiological range were used. However, the analysis of in vivo data shows that the
Res3D-Net was able to infer relevant values for blood vessels whose exact diameter and flows
had not been presented to the network in the training phase (see Fig. 8 and supplemental Figure
S4). We hypothesize that the network can interpolate for data in the range parameters of the data
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presented in the training phase. Further work is requested to investigate this issue and how the
network would perform for data with parameters far from the range of those used in the training
phase. Using simulated data has the intrinsic advantage of providing large amount of data for a
vast range of parameters. Whether using experimental or simulated data is better to train CNN
networks in the context of LSCI or MESI imaging remains an open question.

4.2. Comparison of MSR-Net and Res3D-Net

In this study, we proposed two networks for predicting blood flow distribution. The MSR-Net
primarily predicts blood flow distribution based on the extracting speckle features independently
at different exposure times. In contrast, the Res3D-Net performs convolution with 3D kernels,
allowing it to extract features that simultaneously contain speckles and their correlations at
different exposure times. Since the MESI model is based on the changes in K values at different
exposure times, 3D feature extraction of the Res3D-Net is inherently closer to the assumptions
of the MESI model. Despite this, our microfluidic experiments showed that both the MSR-Net
and Res3D-Net were capable of accurately predicting blood flow. However, when performing
five-fold cross-validation, the five sets of data predicted by the Res3D-Net exhibited less variation.
Less variation in network prediction indicates a reduced likelihood of overfitting and improved
generalization ability. We speculate that this may be due to the Res3D-Net’s closer alignment
with the assumptions of the MESI model, making it easier to identify correlations between input
speckle images and blood flow distribution during training. It is worth noting that previous
work used ANN methods to establish the relationship between changes in K values at different
exposure times and flow velocity using simulated data [12]. However, in our study, our CNN
architecture further incorporates spatial information from speckle images. By considering spatial
information, one can better avoid convergence failure or extreme values that may arise when
predicting on a pixelwise basis.

4.3. Comparison of CNN and non-linear fitting approaches

The comparison of the blood flow maps derived using the CNN approach and non-linear fitting
approach shows similar distribution of the relative blood flows. In addition, the machine
learning approach has several advantages compared to the model fitting approach applied to the
MESI data obtained using synthetic exposure with a sCMOS camera. First, it does not require
computationally intensive pixelwise fitting. In fact, processing a 700× 700 pixels image with the
Res3D-Net takes around 400 ms, reducing the processing time by a factor of 3115 compared to
non-linear fitting in a python implementation using the same computer hardware configuration
(see supplementary Figure S1). Indeed, CNN computation time falls below 1 s starting from 3
used cores which obviates the need of a complex hardware configuration to perform the necessary
calculations. Consequently, this improvement paves the way for real-time MESI analysis. Second,
the pixelwise non-linear fitting model is sensitive to data noise and to the choice of the initial
parameters of the fit. Therefore, for multiple exposure data with suboptimal time sampling at
the early times of decorrelation, the fit does not converge for all pixels leading to the need of
defining large ROIs to average neighboring pixels contrast values. Contrarily, the CNN derived
blood flow maps show consistent and homogeneous relative flow values for neighboring pixels.
Third, the CNN approach does not rely on a priori model of how speckle contrast is related to
the decorrelation time. Indeed, in the non-linear fitting approach, the model is most generally
founded on the assumption of an exponential decay of the decorrelation function of the field
g1(t), assuming that the flow regime is either single scattering un-ordered (SU) or multiple
scattering ordered (MO). However, using a very high frame rate camera (>20kHz) to calculate
experimentally g1(t) for each pixel of the exposed brain of a mouse, it was shown that various
mixed flow regimes co-exist including multiple scattering unordered flow (MU) for capillaries
and parenchyma or single scattering ordered flow (SO) for large vessels [32]. These findings are
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meaningful from a physiological point of view, since the flow regimes in arterioles, capillaries or
the parenchyma are different. Consequently, the fitting function should be adapted for each pixel
of the field of view considering the local flow regime. Changing the fitting functions applied
to the experimental data ultimately leads to different estimations of the decorrelation time τc.
Practically, as a single fitting function for all pixels must be set in advance, a trade-off is made,
leading to significant errors in the estimations of the flow. Alternatively, a model free approach
for speckle data analysis based on a new definition of the speckle contrast was recently proposed
and validated provided that the ergodicity condition is satisfied [36]. This assumption is not true
when static scatterers contribute significantly to the speckle contrast and the method is no longer
model-free as it requires the introduction of a parameter to characterize the stiffness of g1(t)
decrease. The CNN machine learning approach proposed here is totally model-free by nature
and is likely to encompass the complexity of speckle contrast formation through training with
experimental data to adjust the network weights. As also supported by a recent study for in vitro
data acquired for a rotating disk covered with a diffusive paint [19], a carefully trained CNN
network with accurately sampled MESI data is likely to predict quantitative velocities
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